Polygon Mesh Processing Library
Loading...
Searching...
No Matches
pmp Namespace Reference

The pmp-library namespace. More...

Classes

class  AllocationException
 Exception indicating failure to allocate a new resource. More...
 
class  BoundingBox
 Simple class for representing a bounding box. More...
 
class  Edge
 this type represents an edge (internally it is basically an index) More...
 
class  EdgeProperty
 Edge property of type T. More...
 
class  Face
 this type represents a face (internally it is basically an index) More...
 
class  FaceProperty
 Face property of type T. More...
 
class  GLException
 Exception indicating an OpenGL error. More...
 
class  Halfedge
 this type represents a halfedge (internally it is basically an index) More...
 
class  HalfedgeProperty
 Halfedge property of type T. More...
 
class  Handle
 Base class for all entity handles types. More...
 
class  InvalidInputException
 Exception indicating invalid input passed to a function. More...
 
class  IOException
 Exception indicating an error occurred while performing IO. More...
 
struct  IOFlags
 Flags to control reading and writing. More...
 
class  Matrix
 Generic class for \( M \times N \) matrices. More...
 
class  MemoryUsage
 A simple class to retrieve memory usage information. More...
 
class  MeshViewer
 Simple viewer for a SurfaceMesh. More...
 
class  Renderer
 Class for rendering surface meshes using OpenGL. More...
 
class  Shader
 Class for handling shaders. More...
 
class  SolverException
 Exception indicating failure so solve an equation system. More...
 
class  StopWatch
 A simple stop watch class. More...
 
class  SurfaceMesh
 A class for representing polygon surface meshes. More...
 
class  TopologyException
 Exception indicating a topological error has occurred. More...
 
class  TrackballViewer
 A simple GLFW viewer with trackball user interface. More...
 
class  Vertex
 this type represents a vertex (internally it is basically an index) More...
 
class  VertexProperty
 Vertex property of type T. More...
 
class  Window
 A window provided by GLFW. More...
 

Typedefs

using SparseMatrix = Eigen::SparseMatrix< double >
 PMP uses Eigen's double-precision sparse matrices.
 
using DiagonalMatrix = Eigen::DiagonalMatrix< double, Eigen::Dynamic >
 PMP uses Eigen's double-precision diagonal matrices.
 
using DenseMatrix = Eigen::MatrixXd
 PMP uses Eigen's double-precision dense matrices.
 
using Triplet = Eigen::Triplet< double >
 PMP uses Eigen's double-precision triplets.
 
template<typename Scalar , int M>
using Vector = Matrix< Scalar, M, 1 >
 template specialization for Vector as Nx1 matrix
 
template<typename Scalar >
using Mat4 = Matrix< Scalar, 4, 4 >
 template specialization for 4x4 matrices
 
template<typename Scalar >
using Mat3 = Matrix< Scalar, 3, 3 >
 template specialization for 3x3 matrices
 
template<typename Scalar >
using Mat2 = Matrix< Scalar, 2, 2 >
 template specialization for 2x2 matrices
 
using vec2 = Vector< float, 2 >
 template specialization for a vector of two float values
 
using dvec2 = Vector< double, 2 >
 template specialization for a vector of two double values
 
using bvec2 = Vector< bool, 2 >
 template specialization for a vector of two bool values
 
using ivec2 = Vector< int, 2 >
 template specialization for a vector of two int values
 
using uvec2 = Vector< unsigned int, 2 >
 template specialization for a vector of two unsigned int values
 
using vec3 = Vector< float, 3 >
 template specialization for a vector of three float values
 
using dvec3 = Vector< double, 3 >
 template specialization for a vector of three double values
 
using bvec3 = Vector< bool, 3 >
 template specialization for a vector of three bool values
 
using ivec3 = Vector< int, 3 >
 template specialization for a vector of three int values
 
using uvec3 = Vector< unsigned int, 3 >
 template specialization for a vector of three unsigned int values
 
using vec4 = Vector< float, 4 >
 template specialization for a vector of four float values
 
using dvec4 = Vector< double, 4 >
 template specialization for a vector of four double values
 
using bvec4 = Vector< bool, 4 >
 template specialization for a vector of four bool values
 
using ivec4 = Vector< int, 4 >
 template specialization for a vector of four int values
 
using uvec4 = Vector< unsigned int, 4 >
 template specialization for a vector of four unsigned int values
 
using mat2 = Mat2< float >
 template specialization for a 2x2 matrix of float values
 
using dmat2 = Mat2< double >
 template specialization for a 2x2 matrix of double values
 
using mat3 = Mat3< float >
 template specialization for a 3x3 matrix of float values
 
using dmat3 = Mat3< double >
 template specialization for a 3x3 matrix of double values
 
using mat4 = Mat4< float >
 template specialization for a 4x4 matrix of float values
 
using dmat4 = Mat4< double >
 template specialization for a 4x4 matrix of double values
 
using Scalar = float
 Scalar type.
 
using Point = Vector< Scalar, 3 >
 Point type.
 
using Normal = Vector< Scalar, 3 >
 Normal type.
 
using Color = Vector< Scalar, 3 >
 Color type.
 
using TexCoord = Vector< Scalar, 2 >
 Texture coordinate type.
 

Enumerations

enum class  Curvature {
  min , max , mean , gauss ,
  max_abs
}
 Type of curvature to be computed. More...
 

Functions

void curvature_to_texture_coordinates (SurfaceMesh &mesh)
 convert curvature values "v:curv" to 1D texture coordinates stored in vertex property "v:tex"
 
void curvature (SurfaceMesh &mesh, Curvature c=Curvature::mean, int smoothing_steps=0, bool use_tensor=false, bool use_two_ring=false)
 Compute per-vertex curvature (min,max,mean,Gaussian).
 
void decimate (SurfaceMesh &mesh, unsigned int n_vertices, Scalar aspect_ratio=0.0, Scalar edge_length=0.0, unsigned int max_valence=0, Scalar normal_deviation=0.0, Scalar hausdorff_error=0.0, Scalar seam_threshold=1e-2, Scalar seam_angle_deviation=1)
 Mesh decimation based on approximation error and fairness criteria.
 
Scalar triangle_area (const Point &p0, const Point &p1, const Point &p2)
 Compute the area of a triangle given by three points.
 
Scalar face_area (const SurfaceMesh &mesh, Face f)
 Compute area of face f.
 
Scalar surface_area (const SurfaceMesh &mesh)
 Compute the surface area of mesh as the sum of face areas.
 
Scalar edge_area (const SurfaceMesh &mesh, Edge e)
 Compute the area assigned to edge e.
 
Scalar voronoi_area (const SurfaceMesh &mesh, Vertex v)
 Compute the (barycentric) Voronoi area of vertex v.
 
Scalar voronoi_area_mixed (const SurfaceMesh &mesh, Vertex v)
 Compute mixed Voronoi area of a vertex.
 
Scalar volume (const SurfaceMesh &mesh)
 Compute the volume of a mesh.
 
Point centroid (const SurfaceMesh &mesh, Face f)
 Compute the barycenter/centroid of face f.
 
Point centroid (const SurfaceMesh &mesh)
 Compute the barycenter (centroid) of the mesh.
 
void dual (SurfaceMesh &mesh)
 Compute dual of a mesh.
 
double cotan_weight (const SurfaceMesh &mesh, Edge e)
 Compute the cotangent weight for edge e.
 
Point laplace (const SurfaceMesh &mesh, Vertex v)
 Compute the Laplace vector for vertex v, normalized by Voronoi area.
 
Scalar clamp_cot (const Scalar v)
 Clamp cotangent values as if angles are in [3, 177].
 
Scalar clamp_cos (const Scalar v)
 Clamp cosine values as if angles are in [3, 177].
 
Scalar angle (const Point &v0, const Point &v1)
 Compute the angle between two (un-normalized) vectors.
 
Scalar sin (const Point &v0, const Point &v1)
 Compute the sine of angle between two (un-normalized) vectors.
 
Scalar cos (const Point &v0, const Point &v1)
 Compute the cosine of angle between two (un-normalized) vectors.
 
Scalar cotan (const Point &v0, const Point &v1)
 Compute the cotangent of angle between two (un-normalized) vectors.
 
Scalar dist_point_line_segment (const Point &p, const Point &v0, const Point &v1, Point &nearest_point)
 Compute the distance of a point p to a line segment given by points v0 and v1.
 
Scalar dist_point_triangle (const Point &p, const Point &v0, const Point &v1, const Point &v2, Point &nearest_point)
 Compute the distance of a point p to the triangle given by points v0, v1, v2.
 
void minimize_area (SurfaceMesh &mesh)
 Minimize surface area.
 
void minimize_curvature (SurfaceMesh &mesh)
 Minimize surface curvature.
 
void fair (SurfaceMesh &mesh, unsigned int k=2)
 Implicit surface fairing.
 
size_t detect_features (SurfaceMesh &mesh, Scalar angle)
 Mark edges with dihedral angle larger than angle as feature.
 
size_t detect_boundary (SurfaceMesh &mesh)
 Mark all boundary edges as features.
 
void clear_features (SurfaceMesh &mesh)
 Clear feature and boundary edges.
 
void distance_to_texture_coordinates (SurfaceMesh &mesh)
 Use the normalized distances as texture coordinates.
 
unsigned int geodesics (SurfaceMesh &mesh, const std::vector< Vertex > &seeds, Scalar maxdist=std::numeric_limits< Scalar >::max(), unsigned int maxnum=std::numeric_limits< unsigned int >::max(), std::vector< Vertex > *neighbors=nullptr)
 Compute geodesic distance from a set of seed vertices.
 
void geodesics_heat (SurfaceMesh &mesh, const std::vector< Vertex > &seeds)
 Compute geodesic distance from a set of seed vertices.
 
void fill_hole (SurfaceMesh &mesh, Halfedge h)
 Fill the hole specified by halfedge h.
 
void uniform_mass_matrix (const SurfaceMesh &mesh, DiagonalMatrix &M)
 Construct the mass matrix for the uniform Laplacian.
 
void mass_matrix (const SurfaceMesh &mesh, DiagonalMatrix &M)
 Construct the (lumped) mass matrix for the cotangent Laplacian.
 
void uniform_laplace_matrix (const SurfaceMesh &mesh, SparseMatrix &L)
 Construct the uniform Laplace matrix.
 
void laplace_matrix (const SurfaceMesh &mesh, SparseMatrix &L, bool clamp=false)
 Construct the cotan Laplace matrix.
 
void gradient_matrix (const SurfaceMesh &mesh, SparseMatrix &G)
 Construct the cotan gradient matrix.
 
void divergence_matrix (const SurfaceMesh &mesh, SparseMatrix &D)
 Construct the cotan divergence matrix.
 
void coordinates_to_matrix (const SurfaceMesh &mesh, DenseMatrix &X)
 For a mesh with N vertices, construct an Nx3 matrix containing the vertex coordinates in its rows.
 
void matrix_to_coordinates (const DenseMatrix &X, SurfaceMesh &mesh)
 For a mesh with N vertices, set the vertex coordinates from the rows of an Nx3 matrix.
 
Normal face_normal (const SurfaceMesh &mesh, Face f)
 Compute the normal vector of face f.
 
Normal vertex_normal (const SurfaceMesh &mesh, Vertex v)
 Compute the normal vector of vertex v.
 
Normal corner_normal (const SurfaceMesh &mesh, Halfedge h, Scalar crease_angle)
 Compute the normal vector of the polygon corner specified by the target vertex of halfedge h.
 
void vertex_normals (SurfaceMesh &mesh)
 Compute vertex normals for the whole mesh.
 
void face_normals (SurfaceMesh &mesh)
 Compute face normals for the whole mesh.
 
DenseMatrix cholesky_solve (const SparseMatrix &A, const DenseMatrix &B)
 Solve the linear system A*X=B using sparse Cholesky decomposition.
 
DenseMatrix cholesky_solve (const SparseMatrix &A, const DenseMatrix &B, const std::function< bool(unsigned int)> &is_constrained, const DenseMatrix &C)
 Solve the linear system A*X=B with given hard constraints using sparse Cholesky decomposition.
 
void selector_matrix (const SurfaceMesh &mesh, const std::function< bool(Vertex)> &is_selected, SparseMatrix &S)
 Constructs a selector matrix for a mesh with N vertices.
 
void matrices_to_mesh (const Eigen::MatrixXd &V, const Eigen::MatrixXi &F, SurfaceMesh &mesh)
 Build SurfaceMesh from Eigen matrices containing vertex coordinates and triangle indices.
 
void mesh_to_matrices (const SurfaceMesh &mesh, Eigen::MatrixXd &V, Eigen::MatrixXi &F)
 Convert SurfaceMesh to Eigen matrices of vertex coordinates and triangle indices.
 
void harmonic_parameterization (SurfaceMesh &mesh, bool use_uniform_weights=false)
 Compute discrete harmonic parameterization.
 
void lscm_parameterization (SurfaceMesh &mesh)
 Compute parameterization based on least squares conformal mapping.
 
void uniform_remeshing (SurfaceMesh &mesh, Scalar edge_length, unsigned int iterations=10, bool use_projection=true)
 Perform uniform remeshing.
 
void adaptive_remeshing (SurfaceMesh &mesh, Scalar min_edge_length, Scalar max_edge_length, Scalar approx_error, unsigned int iterations=10, bool use_projection=true)
 Perform adaptive remeshing.
 
SurfaceMesh tetrahedron ()
 Generate tetrahedron.
 
SurfaceMesh hexahedron ()
 Generate hexahedron.
 
SurfaceMesh octahedron ()
 Generate octahedron.
 
SurfaceMesh dodecahedron ()
 Generate dodecahedron.
 
SurfaceMesh icosahedron ()
 Generate icosahedron.
 
SurfaceMesh icosphere (size_t n_subdivisions=3)
 Generate icosphere refined by n_subdivisions .
 
SurfaceMesh quad_sphere (size_t n_subdivisions=3)
 Generate quad sphere refined by n_subdivisions .
 
SurfaceMesh uv_sphere (const Point &center=Point(0, 0, 0), Scalar radius=1.0, size_t n_slices=15, size_t n_stacks=15)
 Generate UV sphere with given center, radius, n_slices, and n_stacks.
 
SurfaceMesh plane (size_t resolution=4)
 Generate a plane mesh.
 
SurfaceMesh cone (size_t n_subdivisions=30, Scalar radius=1.0, Scalar height=2.5)
 Generate a cone mesh.
 
SurfaceMesh cylinder (size_t n_subdivisions=30, Scalar radius=1.0, Scalar height=2.5)
 Generate a cylinder mesh.
 
SurfaceMesh torus (size_t radial_resolution=20, size_t tubular_resolution=40, Scalar radius=1.0, Scalar thickness=0.4)
 Generate a torus mesh.
 
void explicit_smoothing (SurfaceMesh &mesh, unsigned int iterations=10, bool use_uniform_laplace=false)
 Perform explicit Laplacian smoothing.
 
void implicit_smoothing (SurfaceMesh &mesh, Scalar timestep=0.001, unsigned int iterations=1, bool use_uniform_laplace=false, bool rescale=true)
 Perform implicit Laplacian smoothing.
 
void catmull_clark_subdivision (SurfaceMesh &mesh, BoundaryHandling boundary_handling=BoundaryHandling::Interpolate)
 Perform one step of Catmull-Clark subdivision.
 
void loop_subdivision (SurfaceMesh &mesh, BoundaryHandling boundary_handling=BoundaryHandling::Interpolate)
 Perform one step of Loop subdivision.
 
void quad_tri_subdivision (SurfaceMesh &mesh, BoundaryHandling boundary_handling=BoundaryHandling::Interpolate)
 Perform one step of quad-tri subdivision.
 
void linear_subdivision (SurfaceMesh &mesh)
 Perform one step of linear quad-tri subdivision.
 
void triangulate (SurfaceMesh &mesh)
 Triangulate all faces in mesh by applying triangulate().
 
void triangulate (SurfaceMesh &mesh, Face f)
 Triangulate the Face f .
 
BoundingBox bounds (const SurfaceMesh &mesh)
 Compute the bounding box of mesh .
 
void flip_faces (SurfaceMesh &mesh)
 Flip the orientation of all faces in mesh .
 
Scalar min_face_area (const SurfaceMesh &mesh)
 Compute the minimum area of all faces in mesh .
 
Scalar mean_edge_length (const SurfaceMesh &mesh)
 Compute mean edge length of mesh .
 
Scalar edge_length (const SurfaceMesh &mesh, Edge e)
 Compute length of an edge e in mesh .
 
void read (SurfaceMesh &mesh, const std::filesystem::path &file)
 Read into mesh from file.
 
void write (const SurfaceMesh &mesh, const std::filesystem::path &file, const IOFlags &flags=IOFlags())
 Write mesh to file controlled by flags.
 
template<typename Scalar , int M, int N>
std::ostream & operator<< (std::ostream &os, const Matrix< Scalar, M, N > &m)
 output a matrix by printing its space-separated components
 
template<typename Scalar , int M, int N, int K>
Matrix< Scalar, M, N > operator* (const Matrix< Scalar, M, K > &m1, const Matrix< Scalar, K, N > &m2)
 matrix-matrix multiplication
 
template<typename Scalar , int M, int N>
Matrix< Scalar, M, N > cmult (const Matrix< Scalar, M, N > &m1, const Matrix< Scalar, M, N > &m2)
 component-wise multiplication
 
template<typename Scalar , int M, int N>
Matrix< Scalar, N, M > transpose (const Matrix< Scalar, M, N > &m)
 transpose MxN matrix to NxM matrix
 
template<typename Scalar , int M, int N>
Matrix< Scalar, M, N > operator+ (const Matrix< Scalar, M, N > &m1, const Matrix< Scalar, M, N > &m2)
 matrix addition: m1 + m2
 
template<typename Scalar , int M, int N>
Matrix< Scalar, M, N > operator- (const Matrix< Scalar, M, N > &m1, const Matrix< Scalar, M, N > &m2)
 matrix subtraction: m1 - m2
 
template<typename Scalar , int M, int N>
Matrix< Scalar, M, N > operator- (const Matrix< Scalar, M, N > &m)
 matrix negation: -m
 
template<typename Scalar , typename Scalar2 , int M, int N>
Matrix< Scalar, M, N > operator* (const Scalar2 s, const Matrix< Scalar, M, N > &m)
 scalar multiplication of matrix: s*m
 
template<typename Scalar , typename Scalar2 , int M, int N>
Matrix< Scalar, M, N > operator* (const Matrix< Scalar, M, N > &m, const Scalar2 s)
 scalar multiplication of matrix: m*s
 
template<typename Scalar , typename Scalar2 , int M, int N>
Matrix< Scalar, M, N > operator/ (const Matrix< Scalar, M, N > &m, const Scalar2 s)
 divide matrix by scalar: m/s
 
template<typename Scalar , int M, int N>
Scalar norm (const Matrix< Scalar, M, N > &m)
 compute the Frobenius norm of a matrix (or Euclidean norm of a vector)
 
template<typename Scalar , int M, int N>
Scalar sqrnorm (const Matrix< Scalar, M, N > &m)
 compute the squared Frobenius norm of a matrix (or squared Euclidean norm of a vector)
 
template<typename Scalar , int M, int N>
Matrix< Scalar, M, N > normalize (const Matrix< Scalar, M, N > &m)
 return a normalized copy of a matrix or a vector
 
template<typename Scalar , int M, int N>
Matrix< Scalar, M, N > min (const Matrix< Scalar, M, N > &m1, const Matrix< Scalar, M, N > &m2)
 return component-wise minimum
 
template<typename Scalar , int M, int N>
Matrix< Scalar, M, N > max (const Matrix< Scalar, M, N > &m1, const Matrix< Scalar, M, N > &m2)
 return component-wise maximum
 
template<typename Scalar >
Mat4< Scalarviewport_matrix (Scalar l, Scalar b, Scalar w, Scalar h)
 OpenGL viewport matrix with parameters left, bottom, width, height.
 
template<typename Scalar >
Mat4< Scalarinverse_viewport_matrix (Scalar l, Scalar b, Scalar w, Scalar h)
 inverse of OpenGL viewport matrix with parameters left, bottom, width, height
 
template<typename Scalar >
Mat4< Scalarfrustum_matrix (Scalar l, Scalar r, Scalar b, Scalar t, Scalar n, Scalar f)
 OpenGL frustum matrix with parameters left, right, bottom, top, near, far.
 
template<typename Scalar >
Mat4< Scalarinverse_frustum_matrix (Scalar l, Scalar r, Scalar b, Scalar t, Scalar n, Scalar f)
 inverse of OpenGL frustum matrix with parameters left, right, bottom, top, near, far
 
template<typename Scalar >
Mat4< Scalarperspective_matrix (Scalar fovy, Scalar aspect, Scalar zNear, Scalar zFar)
 OpenGL perspective matrix with parameters field of view in y-direction, aspect ratio, and distance of near and far planes.
 
template<typename Scalar >
Mat4< Scalarinverse_perspective_matrix (Scalar fovy, Scalar aspect, Scalar zNear, Scalar zFar)
 inverse of perspective matrix
 
template<typename Scalar >
Mat4< Scalarortho_matrix (Scalar left, Scalar right, Scalar bottom, Scalar top, Scalar zNear=-1, Scalar zFar=1)
 OpenGL orthogonal projection matrix with parameters left, right, bottom, top, near, far.
 
template<typename Scalar >
Mat4< Scalarlook_at_matrix (const Vector< Scalar, 3 > &eye, const Vector< Scalar, 3 > &center, const Vector< Scalar, 3 > &up)
 OpenGL look-at camera matrix with parameters eye position, scene center, up-direction.
 
template<typename Scalar >
Mat4< Scalartranslation_matrix (const Vector< Scalar, 3 > &t)
 OpenGL matrix for translation by vector t.
 
template<typename Scalar >
Mat4< Scalarscaling_matrix (const Scalar s)
 OpenGL matrix for scaling x/y/z by s.
 
template<typename Scalar >
Mat4< Scalarscaling_matrix (const Vector< Scalar, 3 > &s)
 OpenGL matrix for scaling x/y/z by the components of s.
 
template<typename Scalar >
Mat4< Scalarrotation_matrix_x (Scalar angle)
 OpenGL matrix for rotation around x-axis by given angle (in degrees)
 
template<typename Scalar >
Mat4< Scalarrotation_matrix_y (Scalar angle)
 OpenGL matrix for rotation around y-axis by given angle (in degrees)
 
template<typename Scalar >
Mat4< Scalarrotation_matrix_z (Scalar angle)
 OpenGL matrix for rotation around z-axis by given angle (in degrees)
 
template<typename Scalar >
Mat4< Scalarrotation_matrix (const Vector< Scalar, 3 > &axis, Scalar angle)
 OpenGL matrix for rotation around given axis by given angle (in degrees)
 
template<typename Scalar >
Mat4< Scalarrotation_matrix (const Vector< Scalar, 4 > &quat)
 OpenGL matrix for rotation specified by unit quaternion.
 
template<typename Scalar >
Mat3< Scalarlinear_part (const Mat4< Scalar > &m)
 return upper 3x3 matrix from given 4x4 matrix, corresponding to the linear part of an affine transformation
 
template<typename Scalar >
Vector< Scalar, 3 > projective_transform (const Mat4< Scalar > &m, const Vector< Scalar, 3 > &v)
 projective transformation of 3D vector v by a 4x4 matrix m: add 1 as 4th component of v, multiply m*v, divide by 4th component
 
template<typename Scalar >
Vector< Scalar, 3 > affine_transform (const Mat4< Scalar > &m, const Vector< Scalar, 3 > &v)
 affine transformation of 3D vector v by a 4x4 matrix m: add 1 as 4th component of v, multiply m*v, do NOT divide by 4th component
 
template<typename Scalar >
Vector< Scalar, 3 > linear_transform (const Mat4< Scalar > &m, const Vector< Scalar, 3 > &v)
 linear transformation of 3D vector v by a 4x4 matrix m: transform vector by upper-left 3x3 submatrix of m
 
template<typename Scalar >
Mat4< Scalarinverse (const Mat4< Scalar > &m)
 return the inverse of a 4x4 matrix
 
template<typename Scalar >
Scalar determinant (const Mat3< Scalar > &m)
 return determinant of 3x3 matrix
 
template<typename Scalar >
Mat3< Scalarinverse (const Mat3< Scalar > &m)
 return the inverse of a 3x3 matrix
 
template<typename Scalar >
bool symmetric_eigendecomposition (const Mat3< Scalar > &m, Scalar &eval1, Scalar &eval2, Scalar &eval3, Vector< Scalar, 3 > &evec1, Vector< Scalar, 3 > &evec2, Vector< Scalar, 3 > &evec3)
 compute eigenvector/eigenvalue decomposition of a 3x3 matrix
 
template<typename Scalar , int N>
std::istream & operator>> (std::istream &is, Vector< Scalar, N > &vec)
 read the space-separated components of a vector from a stream
 
template<typename Scalar , int N>
std::ostream & operator<< (std::ostream &os, const Vector< Scalar, N > &vec)
 output a vector by printing its space-separated components
 
template<typename Scalar , int N>
Scalar dot (const Vector< Scalar, N > &v0, const Vector< Scalar, N > &v1)
 compute the dot product of two vectors
 
template<typename Scalar , int N>
Scalar distance (const Vector< Scalar, N > &v0, const Vector< Scalar, N > &v1)
 compute the Euclidean distance between two points
 
template<typename Scalar >
Vector< Scalar, 2 > perp (const Vector< Scalar, 2 > &v)
 compute perpendicular vector (rotate vector counter-clockwise by 90 degrees)
 
template<typename Scalar >
Vector< Scalar, 3 > cross (const Vector< Scalar, 3 > &v0, const Vector< Scalar, 3 > &v1)
 compute the cross product of two vectors (only valid for 3D vectors)
 
std::ostream & operator<< (std::ostream &os, const StopWatch &watch)
 output a elapsed time to a stream
 
std::ostream & operator<< (std::ostream &os, Vertex v)
 output a Vertex to a stream
 
std::ostream & operator<< (std::ostream &os, Halfedge h)
 output a Halfedge to a stream
 
std::ostream & operator<< (std::ostream &os, Edge e)
 output an Edge to a stream
 
std::ostream & operator<< (std::ostream &os, Face f)
 output a Face to a stream
 

Detailed Description

The pmp-library namespace.

Function Documentation

◆ cholesky_solve() [1/2]

DenseMatrix cholesky_solve ( const SparseMatrix A,
const DenseMatrix B 
)

Solve the linear system A*X=B using sparse Cholesky decomposition.

Returns the solution vector/matrix X.

Precondition
The matrix A has to be sparse, symmetric, and positive definite.
Parameters
AThe system matrix.
BThe right hand side.

◆ cholesky_solve() [2/2]

DenseMatrix cholesky_solve ( const SparseMatrix A,
const DenseMatrix B,
const std::function< bool(unsigned int)> &  is_constrained,
const DenseMatrix C 
)

Solve the linear system A*X=B with given hard constraints using sparse Cholesky decomposition.

Returns the solution vector or matrix X.

Precondition
The matrix A has to be sparse, symmetric, and positive definite.
Parameters
AThe system matrix.
BThe right hand side.
is_constrainedA function returning whether or not X(i) is constrained or not.
CA matrix storing the Dirichlet constraints: X(i) should be C(i) is entry i is constrained.

◆ distance_to_texture_coordinates()

void distance_to_texture_coordinates ( SurfaceMesh mesh)

Use the normalized distances as texture coordinates.

Stores the normalized distances in a vertex property of type TexCoord named "v:tex". Re-uses any existing vertex property of the same type and name.

◆ matrices_to_mesh()

void matrices_to_mesh ( const Eigen::MatrixXd &  V,
const Eigen::MatrixXi &  F,
SurfaceMesh mesh 
)

Build SurfaceMesh from Eigen matrices containing vertex coordinates and triangle indices.

Parameters
V\(n\times 3\) matrix of double precision vertex coordinates.
F\(m\times 3\) matrix of integer triangle indices.
meshThe mesh to be build from V and F . The mesh will be cleared.

◆ mesh_to_matrices()

void mesh_to_matrices ( const SurfaceMesh mesh,
Eigen::MatrixXd &  V,
Eigen::MatrixXi &  F 
)

Convert SurfaceMesh to Eigen matrices of vertex coordinates and triangle indices.

Parameters
meshThe mesh used to fill V and F .
VThe resulting \(n\times 3\) matrix of double precision vertex coordinates.
FThe resulting \(m\times 3\) matrix of integer triangle indices.

◆ selector_matrix()

void selector_matrix ( const SurfaceMesh mesh,
const std::function< bool(Vertex)> &  is_selected,
SparseMatrix S 
)

Constructs a selector matrix for a mesh with N vertices.

Returns a matrix built from the rows of the NxN identity matrix that belong to selected vertices.

Parameters
meshThe input mesh.
is_selectedA function returning whether or not vertex i is selected or not.
SThe output matrix.